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Abstract. Using an appropriate labelling operator constructed from representation gen- 
erators, SU(3) Clebsch-Gordan coefficients are introduced whose symmetry properties are 
similar to those of their SU(2) counterparts. An algebraic algorithm for computing the 
coefficients is presented. 

1. Introduction 

The SU( 3) Racah-Wigner algebra, frequently used in modern theoretical physics, has 
been the subject of numerous investigations in the last two decades (cf, e.g. Edmonds 
1962, Moshinsky 1962, 1963, de Swart 1963, Hecht 1965, Chew and Sharp 1967, 
Resnikoff 1967a,b, Draayer and Akiyama 1973, Millener 1978, Klimyk 1979). Its 
large-scale applications, mainly in nuclear theory, employ the SU(3) Clebsch-Gordan 
coefficients introduced by Draayer and Akiyama (1973). These authors use the theory 
of Wigner operators, developed for general unitary groups by Biedenharn, Louck and 
co-workers (Chac6n et a1 1972 and references therein). Their method of constructing 
the SU(3) Wigner operators, however, is rather asymmetric in the representations 
involved, and thus their coefficients have rather complex symmetry properties. The 
potential advantages of coefficients of more simple symmetry properties, similar to 
those known from the SU(2) case, are obvious. The existence of such coefficients, by 
no means trivial, has been discussed by Derome (1967) in the context of his general 
analyses of the Racah-Wigner algebras (Derome and Sharp 1965, Derome 1966), and 
briefly re-discussed in the same context by Butler (1975). 

In this paper, we present an explicit construction of SU(3) Clebsch-Gordan 
coefficients with simple symmetry properties, based on applying an appropriate label- 
ling operator constructed from representation generators. The construction is purely 
infinitesimal and makes use of the SU(3) projection technique. 

2. Conventions and notation 

Only the ket representations will be considered. Tht  irreducible representation of 
highest weight ( a b )  ( I R  of H W  ( a b ) )  will be denoted by L ) ( O b ) ;  its basic generators will 
be denoted by E,, p, U = 1,2,3,  and defined by the usual defining relations: 

[E,, E,,,,] = 8,bEP'J' - 8,dE,,, (2.1) 
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Ell  + E33 = 0 and E;, = Eup. As the weight operators we take 

W l ( E )  = Ell - E22 W 2 ( E )  = E 2 2 -  €33. (2.2) 

F2( E )  = 3 Tr( E € )  (2.3) 

Other operators to be used are the Casimir operators: 

where Tr(EE) =I; €,,E,,; their respective eigenvalues in the states of D(Ob’ are (cf, 
e.g. de Swart 1963) 

F3( E ) = 9 Tr( EEE ) - f Tr( .E€ ) 

f 2 (ab )  = ( U  + b + 3 ) ( ~  + 6 )  - a b  f 3 ( ~ 6 ) = ( ~ - 6 ) ( 2 ~ +  b + 3 ) ( ~ + 2 6 + 3 ) .  (2.4) 
In addition to the above operators we shall use the ‘isospin’ operators: 

I + ( . E )  = El2 L(.E) =$(E11 - E221 I-(  E )  = Ezl (2.5) 
referring to the SU( 2) isospin subgroup, the ‘angular momentum’ operators 

A+ ( E = J2 ( E ,  2 + €23 ) = E l l  - € 3 3  A - ( € )  = &‘( + .E32) (2.6) 
referring to the SO( 3)  angular momentum subgroup, the ‘hypercharge’ operator 

(2.7) 
and the irreducible tensorial operators of the SU(2) isospin group Bit)( E )  defined by 

Y (  E ) = f ( El 1 + E22 - 2E3J 

The highest state of D(Ob’ will be denoted by lab), and defined by W , ( E ) l u b )  = alab), 
W 2 ( E ) l a b )  = blab) and €,,lab) = 0 for p < a;  its hypercharge, isospin and angular 
momentum will be denoted respectively by yo, io and Ao; explicitly, 

yo  = ! ( a  +2b)  io = $a A0 = U + 6. (2.9) 
The canonical basic states of D(Ob) of hypercharge y, isospin i and isospin projection 

i, will be denoted by Iabyii,). Their relative phases are assumed to be in agreement 
with the phase convention of Baird and Biedenharn (1963). The canonical states 
satisfy the recursion relation ( y  < y’): 

/ ab  yii,) = B ~ ) ( E ) l u b y ’ i ‘ i ~ ) (  kk, i’iL1 ii,)( -l)’o+x+z 

x [(2x + 1)(2i’+ l)]”*( NEb’/ NF?)) 

i ’kzzi  

(2.10) 

where k = i ( y ’  - y ) ,  NKb’ is the normalisation factor given by 

(2.11) 
x = l ( y o  - y ) ,  and the round-bracket symbol is the SU(2) Clebsch-Gordan coefficient. 
The reduced matrix elements of the tensors Bik)(E) between the canonical states are 
(again x = t ( y o - - y ) )  
(~by i I IB‘~’ l la6y ’ i ’ )  

N::” = {[(io+ b - x + i + l ) !  ( io+ 6 - x - i)!]/[(u +. b + l ) !  b !  ( 2 ~ ) ! ] } ” ~  

- - 6 x , k + x  (- 1 )  lo+ k + x + ’ ’  [(2x + 1)(2i+ 1)(2i’+ l)]”*( N$:’/Nsb’) 

(2.12) 

The dimension of D(Ob) will be denoted by dim(ab). 

the canonical basic states of D ( O b )  and b(ba) are related by (cf, e.g. de Swart 1963) 
The conjugate I R  generated by the operators E,, = - E,, will be denoted by D(ba);  

lab yii,) = I b a ( - l ) ” + b + t y + i z .  (2.13) 
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3. The labelling operator and the s-classified reduced states 

We solve the multiplicity problem arising in reducing the product D(a'b')  x D('"b") by 
introducing the s-classified reduced states satisfying the eigenproblem 

S ( E ' ,  E" ) ( (a 'b '  a"b")abyii, s) = sl(a'b' a"b")abyii, s) (3.1) 

with S ( E ' ,  E " )  being the labelling operator introduced in the following way. We 
require this operator to be Hermitean, invariant under the SU(3) transformations 
generated by the operators E,, = E;,+  E:u, and of the lowest possible order in the 
generators E ; ,  and E:m. In addition we require this operator to be of the form ensuring 
the envisaged simple symmetry properties of the s-classified SU(3) Clebsch-Gordan 
coefficients. This requirement will be formulated as a symmetry relation imposed on 
the labelling operators to be used in reducing the triple product D(a'b') x D(a"b") x D(a"'b"') 
and its conjugate. Explicitly this will be done by requiring that 

S ( E ' ,  E" )  = - S ( E " ,  E ' ) =  - S ( E ' ,  E'") = - S ( E ' ,  E " )  (3.2) 
when applied to the SU(3) invariants of the triple products under consideration. The 
above requirements determine the labelling operator uniquely up to a factor. In an 
appropriate normalisation 

S ( E ' ,  E")  = 2 7  Tr(E'E"E")-27 T r ( E " E ' E ' ) - 2 F 3 ( E ' ) + 2 F 3 ( E " )  (3.3) 

where F 3 ( E ' )  is the third order Casimir operator of D(a'b')  defined by (2.3). It should 
be noted that the same requirements, but with the positive sign everywhere in (3.2), 
cannot be met by an operator of the third order in the representation generators. The 
eigenproblem (3.1), as shown below, defines the s-classified reduced states 
unambiguously to within a phase. 

The non-trivial part of determining the s-classified reduced states consists in 
constructing the highest ones, from which the others may easily be obtained by the 
lowering procedure (2.10). The highest states J (a 'b 'a"b" )abs )  are to be found by 
solving the eigenproblem (3.1) in the invariant subspace of S ( E ' ,  E")  formed by the 
highest states of D(a'b')  x D(a"b") of weight ( a b ) .  It can be shown that a suitable basis 
of this space is provided by the 6 states le,,,), p s m s q, defined by 

( EL;2)'+m (- E 3 N 1 p  ( I &) = Pb)( E )  la'b' a"b") 
( 1 +  m ) ! ( 1 -  m ) ! ( n  + m ) !  (3.4) 

where P ' Q b ' ( E )  is the subspace projector, la'b' a"b") = la'b')ja"b"), and 1 and n are the 
quantum numbers specified by 

1 =:(a '+ a"- a +2bf+2b"-2b)  n = + ( a ' + a " - a ) .  (3.5) 

p = -min(l, n )  q = p + p - I  (3.6) 

The limits of m are explicitly determined by 

with p being the multiplicity of the irreducible components of the HW ( a b )  in the 
product. An explicit expression for the subspace projector P(Ob'(E)  to be used in (3.4) 
is given by (Smirnov 1969, Asherova et a1 1971) 

(3.7) 
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Employing the commutativity of S ( E ’ ,  E ” )  and P c a b ’ ( E )  and the fact that 
Pcab)( E )&,  = 0 for p > a, one finds that in the biorthonormal basis formed by the 
states 16,) and by the dual states 16;) the matrix of S ( E ’ ,  E”)  takes the quasi-tridiagonal 
form defined by (Sf in  = (5+IS(E’, E”)16;)) 

0 . . .  0 0 0  
a p + l  P p + *  . 0 

( S )  = 

0 0  0 . . .  7 4 - 2  aq-1 P q  

wp q J + l  wp+2 . * .  wq-2 wq-1 wq ,  
the values of the matrix elements being 

a, = 18{[( a + 6 -a ’ -  b’+ I - m + l ) (a ’ -  b‘+31+3m + 6 )  

+(a ’+  2 6 ’ + 6 ) ( I +  m + I ) ] ( /  - m) 
- ( b  - b’+ l +  m + 1)(2a‘+ b’- 3 ) ( 1 +  m )  

+ ( a  - a‘ + n - m + 1 ) ( a  ‘ + 26’ - 3 I - 3 m + 6 )  ( n + m )} +f3( a b )  - 3f3( a’b’) 

+f3(  a”b”) + 27[f2( ab)  -f2( a‘b’) -fi( U”b”)]  

- 6 { ( 2 ~  + b - 2 ~ ‘ -  b ’ ) [ ( a ’ ) ’ -  ( b ’ ) 2 + 6 ~ ’ + 3 b ’ ]  

+ b’( U - b - U ’ +  b ’ ) ( 2 ~ ’ +  b’ - 3 ) )  

P m  = 54(a + b+ I -  m + 3 ) ( 1 +  m ) ( n  + m) 
7, = 54(a - a’+ n - m)(b’ -  I -  m ) ( I -  m )  

In the expression for w, 

r = min( I ,  b’ - I ,  a”-  n ) ,  ( 3 .9 )  
It should be noted that r S q = min( r, r + a’ -  I - n, r + b”- 21). 

Since the matrix elements P, are different from zero, the subspace is cyclic and, 
consequently, the eigenvalues s of (3 .8 )  are all distinct. Thus the eigenproblem ( 3 . 1 )  
determines the s-classified reduced states uniquely up to a phase. The remaining phase 
ambiguity will be removed by imposing the phase condition 

(a’b’ a”b” h , “ ~ , “ , ~ ( ~ ’ b ‘ a ” b ” ) a b ~ ) >  0 (3 .10)  

requiring the s-classified highest state I( a’b’ a”b”)ab s) to have a positive projection 
alon the state la’b’ a”b” Agh,”,) = la’b’)/a”b” h,“hg,), where 1a”b” hghg,) is the state of 

of angular momentum A ;  = a”+ b”, of angular momentum projection A:Z = a + 
b - a’- 6’ and of the usual relative phase with respect to the highest state 1a”b”) = 
ja”b”h:A~) .  The labels s are, in general, neither integral nor rational. 

*c,,,k, 

4. The s-classified SU(3) Clebsch-Gordan coefficients: the computational algorithm 

By definition, the s-classified S U ( 3 )  Clebsch-Gordan coefficients 
(a’b’ y’i’i; a”b“ y”i”i’:labyii, s) are the transformation coefficients between the s- 
classified S U ( 3 )  reduced states I(a’b’ n“b”)ab yii, s) and the unreduced states 
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1 a’b’ y’ i ‘ i : ) la”b” y” i ” i : ) .  The non-trivial part of computing the coefficients consists in 
evaluating their isoscalar factors (cf Edmonds 1962) (a’b’ y’i’ a“b” y”i”l1 ab y i  s), iden- 
tical with the transformation coefficients between the s-classified SU(3) reduced states 
[ (a ’b ’  a”b”)ab yi i  s )  and the SU(2) coupled states I(a’b’ y ’ i ’  a”b” y” i ” ) i i ) .  All s-classified 
SU(3) Clebsch-Gordan coefficients (CGCS) and their isoscalar factors (IFS) are real. 

Typically all s-classified IFS of given (a ’b ’ ) ,  (a”,”) and ( a b )  are to be evaluated. 
The computational algorithm may then be as follows. First the allowed s and the 
coefficients ( tml(a‘b’  a”b”)ab s) are to be found by solving the p-dimensional matrix 
eigenproblem (see (3.1) and (3.8)) 

C ( S + ~ - ~ S f i ~ ) ( ( ~ I ( ~ ’ b ’ a ‘ ’ b ” ) a b ~ ) = O  (4.1) 
m 

with the subsidiary condition (cf (3.10)) 

(a’b’ a“b” AgA:,l(dm)(tml(a’b’ a”b”)ab s)>  0 
m 

(4.2) 

the explicit expression for the first factor in (4.2), derivable by the conventional 
expansion technique, being 

where 

(4.3) 

The correct normalisation of the coefficients is easily determined by fitting to the 
normalisation conditions imposed on the IFS. 

As the next step the ‘highest’ IFS of y = y o  and i = io are to be computed, making 
use of the relation (y’” = yo - yh, I?’ = { ( y ” -  y)) 
(a’b’ y ’ i ’  a“b“ y”i”l1 ab yoio s )  

(a’b’  ybih a ” b ” y ’ ” ~ l l a b y o i o  s)  (4.4) ( -  1) i ’ t  P.+i,+P 

expressing the general highest IFS in terms of those with y’  = yh and i f  = i;, and of the 
formula 

(a‘b’  yAib a”b“ y”i”l1 ab yoio s )  

= (( a’b’ ybib a”b” y ” i ” ) i o i o ~ ~ d , ) ( ~ m ~ (  a’b’ a”b”)ab s )  
m 

(4.5) 

expressing these special highest IFS in terms of the coefficients ( tml(a’b’  a”b”)ab s); the 
first factor in (4.5) is 

(( a‘b’ yhih a”b” y” i ” ) io io l td,)  = lm + C m f i l f i ) (  ihihi” io - i ~ ~ i o i o ) - ’  
( m  

with CmA again given by (4.3) and 
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Finally the general IFS are to be computed from the highest ones by repeatedly 
employing the recursion relation (cf, e.g. Hecht 1965) 

(a 'b '  y'i' a"b" y"i"lJ ab yi  s )  

i" i 
x ( a ' b ' y ' + l  2 a"b"y"i"llaby+l :Y){ 

2 

x ( a ' b ' y ' i '  a"b"y"+ 1 i;'lluby+ 1 i s )  
I i "  

(4.6) 

where x = i ( y , - y ) ;  the explicit expression of general IFS in terms of the highest ones, 
particularly useful in checking the computed values, is 

(a 'b '  y'i' a"b" y"i"ll ab y i  s)  

= ( - 1 ) ' " + x - l  NSb'[(2i ,+ 1) (2x+  l)]"* 

x (a 'b '  y ' j ' l l ~ ( k  )Ila'b' 9 f p ) ( a ! ! b ! ~  y " j " l l ~ ( k ' ) ( ( a f l b f 1 9 f r i ; ' )  
;,? 
3' 8 ' 

(4.7) 

with k' = i(9' - y ' ) .  The formulae used in the algorithm follow from the completeness 
of the 5 basis, from the unraisability of the highest reduced states, and from the 
recursion relations (2.10) between the canonical states of different hypercharge. 

Let us note in concluding that the s-classified CGCS with (ah)=(OO) (and, 
necessarily, (a"b") = (b 'a ' ) ,  (yii,) = (000) and s = 2f,(a'b')) are given simply by 

(a'b' y'i ' ik a"b" y"i"i:100 000 s) 

5. The s-classified SU(3) Clebsch-Gordan coefficients: the symmetry properties 

Starting from the symmetry relations ( 3 . 2 )  imposed on the labelling operator, and from 
the phase convention (3.10) imposed on the s-classified highest reduced states, it is 
possible to show that the allowed s-classified SU(3) invariants of the products D'a'b') x 

, defined by equations analogous to ~ ( d ' b ' ' )  ~ ( a " ' b " ' )  and D ( b ' a ' )  O ( b " a " )  D ( b " ' a " ' J  

(5.1) 
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(5.2) blal bllall blllallf -s) 

are linked by the symmetry relations 

1 a f b I  a rib!! u ~ ! ~  bflt s)( - 1 ) a'+ b'+ a"+ b"+ a'"+ b"' 

( - 1 ) a ' + b ' + : y ' + i ;  dim( a"b") 
(dim( bf f ta t f1 ) )  

dim(a"b")(2i1"+ 1) 
dim( b'ftar'l)( 2 i"+ 1 ) 

a'+b +o"+b"+a"'+b"'+ j 8 & , ) ' - , , h  

-S)(-l) . (5.4) - - (b ja!  - y l j ?  blla!! -yflilla,!!bflf y l l ! i f l f  

Thus the s-classified SU(3) CGCS exhibit the symmetry properties similar to those 
of their SU(2) counterparts. The coefficients linked by the basic symmetry relations 
of interchange, crossing and conjugation are those referring to opposite multiplicity 
labels, which is different from what happens in the SU(3) theory discussed in Derome 
(1967) and Butler (1975). The question of possible higher symmetries (cf Regge 1958) 
requires a special investigation. 
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